Mixed Covolume Methods on Rectangular Grids For Elliptic Problems
نویسندگان
چکیده
We consider a covolume method for a system of first order PDEs resulting from the mixed formulation of the variable-coefficient-matrix Poisson equation with the Neumann boundary condition. The system may be used to represent the Darcy law and the mass conservation law in anisotropic porous media flow. The velocity and pressure are approximated by the lowest order Raviart-Thomas space on rectangles. The method was introduced by Russell [Rigorous Blockcentered Discretizations onIrregular Grids: Improved Simulation of Complex Reservoir Systems, Reservoir Simulation Research Corporation, Denver, CO, 1995] as a control-volume mixed method and has been extensively tested by Jones [A Mixed Finite Volume Elementary Method for Accurate Computation of Fluid Velocities in Porous Media, University of Colorado at Denver, 1995] and Cai et al. [Computational Geosciences, 1 (1997), pp. 289-345]. We reformulate it as a covolume method and prove its first order optimal rate of convergence for the approximate velocities as well as for the approximate pressures.
منابع مشابه
A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case
We present a general framework for constructing and analyzing finite volume methods applied to the mixed formulation of second-order elliptic problems on quadrilateral grids. The control volumes, or covolumes, in the grids overlap. An overlapping finite volume method of this type was first introduced by Russell in [T. F. Russell, Tech. report 3, Reservoir Simulation Research Corp., Tulsa, OK, 1...
متن کاملA nonconforming covolume method for elliptic problems
We consider a control volume(covolume) method for second order elliptic PDEs with the rotated-Q1 nonconforming finite element on rectangular grids. The coefficient κ may a variable, diagonal tensor, or discontinuous. We prove first order convergence in H1 norm and second order convergence in L2 norm when the partition is square. Our numerical experiments show that our covolume scheme has about ...
متن کاملMixed Upwinding Covolume Methods on Rectangular Grids for Convection-Diffusion Problems
We consider an upwinding covolume or control-volume method for a system of first order PDEs resulting from the mixed formulation of a convection-diffusion equation with a variable anisotropic diffusion tensor. The system can be used to model the steady state of the transport of a contaminant carried by a flow. We use the lowest order Raviart–Thomas space and show that the concentration and conc...
متن کاملSuperconvergence for Control-Volume Mixed Finite Element Methods on Rectangular Grids
We consider control-volume mixed finite element methods for the approximation of second-order elliptic problems on rectangular grids. These methods associate control volumes (covolumes) with the vector variable as well as the scalar, obtaining local algebraic representation of the vector equation (e.g., Darcy’s law) as well as the scalar equation (e.g., conservation of mass). We establish O(h2)...
متن کاملInterior superconvergence in mortar and non-mortar mixed finite element methods on non-matching grids
We establish interior velocity superconvergence estimates for mixed finite element approximations of second order elliptic problems on non-matching rectangular and quadrilateral grids. Both mortar and non-mortar methods for imposing the interface conditions are considered. In both cases it is shown that a discrete L2-error in the velocity in a compactly contained subdomain away from the interfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2000